About the author

Miriam Allred has spent the last 16 years configuring, testing, and troubleshooting HP and HPE solutions. She combines this wide range of technical expertise with pedagogy and instructional design training, allowing her to create entry-level to advanced technical training for server, storage, and networking professionals. She has a Master’s degree from Cleveland State University and a Bachelor’s degree from Brigham Young University.

About the technical reviewers

Iris Young, HPE Distinguished Technologist, and Paul Chin, Software Specialist, provided the technical review.

Introduction

This study guide is based on the Using HPE Containers, Rev. 21.11 course and helps you prepare for HPE Product Certified – Containers [2021] certification exam (HPE2-N68). The guide provides an in-depth introduction to the HPE Ezmeral Container Platform, including key concepts and benefits. It also covers practical tasks such as installation and setup.

Note: The Using HPE Ezmeral Container Platform – Self-Directed Lab also provides hands-on exercises to learn how to install, set up, and use the HPE Ezmeral Container Platform.

Certification and learning

Hewlett Packard Enterprise Certification and Learning provides end-to-end continuous learning programs and professional certifications that can help you open doors and accelerate your career.

We provide

- Professional sales and technical training and certifications to give you the critical skills needed to design, manage, and implement the most sought-after IT disciplines;

- Continuous learning activities and job-role based learning plans to help you keep pace with the demands of the dynamic, fast-paced IT industry; and

- Advanced training to help you navigate and seize opportunities within the top IT transformation areas that enable business advantage today.

As a Certification and Learning certified member, your skills, knowledge, and real-world experience are recognized and valued in the marketplace. To continue your professional and career growth, you have access to our large HPE community of world-class IT professionals, trend-makers, and decision-makers. Share ideas, best practices, business insights, and challenges as you gain professional connections globally.

To learn more about HPE Certification and Learning certifications and continuous learning programs, please visit http://certification-learning.hpe.com
Audience

HPE customers, partners, and employees who configure, implement, support, and use HPE Ezmeral Container Platform solutions.

Assumed knowledge

It is assumed that you will have basic industry-standard knowledge and skills related to containers, and have some familiarity with the HPE product portfolio.

Minimum qualifications

Typical candidates for this certification are HPE customers, partners, and employees who configure, implement, support, and use HPE Ezmeral Container Platform solutions.

Relevant certifications

After you pass this exam, your achievement may be applicable toward more than one certification. To determine which certifications can be credited with this achievement, log in to The Learning Center and view the certifications listed on the exam’s More Details tab. You might be on your way to achieving additional certifications.

Preparing for Exam HPE2-N68

This self-study guide does not guarantee that you will have all the knowledge you need to pass the exam. It is expected that you will also draw on real-world experience and would benefit from completing the hands-on lab activities provided in the instructor-led training. HPE also provides a self-directed lab environment to which you can purchase access for a three-day period.

Recommended HPE training

Recommended training to prepare for each exam is accessible from the exam’s page in The Learning Center. See the exam attachment, “Supporting courses,” to view and register for the courses.

Obtain hands-on experience

You are not required to take the recommended, supported courses, and completion of training does not guarantee that you will pass the exams. Hewlett Packard Enterprise strongly recommends a combination of training, thorough review of courseware and additional study references, and sufficient on-the-job experience prior to taking an exam.

Exam registration

To register for an exam, go to https://certification-learning.hpe.com/tr/learn_more_about_exams.html
1 Container Foundations ... 1
 Assumed knowledge .. 1
 Container overview .. 1
 What is a container? .. 1
 Containers versus VMs ... 2
 Container benefits .. 3
 Containers for DevOps ... 4
 Some additional container use cases ... 6

Key Docker concepts .. 10
 Docker hosts .. 10
 Comparing virtualized versus bare metal deployment 10
 Docker images, repositories, and registries 12
 Running an image on a Docker host .. 15
 How containers run .. 16
 How Docker containers connect to the network 17
 How Docker containers use storage ... 18
 Stateless versus stateful containerized applications 19

Key Kubernetes concepts ... 20
 Why container orchestration ... 21
 Kubernetes: Open-source container orchestration 21
 Kubernetes pods .. 22
 Kubernetes architecture ... 23
 Kubernetes approach to orchestration ... 25
 Simplified example of Kubernetes orchestration 26
 YAML format .. 28
 Overview of remaining Kubernetes concepts 29
 Kubernetes networking: Requirements ... 30
 Kubernetes networking: Capabilities delivered by solutions 31
 Kubernetes networking: Canal ... 32
 Kubernetes services .. 33
 Kubernetes services: Port versus targetPort 34
 Kubernetes services: ClusterIP services 34
 Kubernetes services: NodePort services 36
 Kubernetes services: Need for load balancing for external services ... 36
Kubernetes configmaps and secrets ..37
Kubernetes storage: Volumes ...38
Kubernetes storage: Persistent Volumes (PVs)40
Kubernetes storage: How a container mounts a PV41
Kubernetes storage: StorageClasses ...43
Kubernetes storage: Container Storage Interface (CSI) driver44
Ongoing challenges and requirements with containers45
Summary..46
Learning checks ..46

2 Introduction to HPE Ezmeral Container Platform49

Assumed knowledge..49
Why HPE Ezmeral Container Platform ...49
 HPE Ezmeral Container Platform ..50
 Key HPE Ezmeral Container Platform use cases50
 Main HPE Ezmeral Container Platform components52
 Key value-adds beyond Kubernetes ...53
 Unified management of multi-cluster Kubernetes: Kubernetes services...55
 Improved operations: Kubernetes services56
 Accelerated modernization for monolithic stateful apps: Kubernetes services and data management ...57
 Simpler application deployment: Application platform and infrastructure services ...58
 Improved security and visibility: Security and infrastructure services ...58
 Enhanced ML Ops: HPE Ezmeral ML Ops license59
 Why HPE Ezmeral Container Platform ..60
 HPE Ezmeral Container Platform versus homegrown Kubernetes61
 HPE Ezmeral Container Platform versus Kubernetes in the public cloud ...62
 HPE Ezmeral Container Platform versus engineered Kubernetes solutions ...63

HPE Ezmeral Container Platform architecture and deployment options64
 HPE Ezmeral Container Platform control plane64
 Access to Kubernetes API through the Ezmeral Container Platform gateway ...66
 Access to Kubernetes services through the Ezmeral Container Platform gateway ...66
 HPE Ezmeral Container Platform logical architecture with EPIC67
 HPE Ezmeral Container Platform host and cluster types68
 HPE Ezmeral Container Platform deployment options69
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE Ezmeral Container Platform deployment options</td>
<td>71</td>
</tr>
<tr>
<td>How HPE Ezmeral Container Platform is licensed</td>
<td>73</td>
</tr>
<tr>
<td>HPE Ezmeral Container Platform multi-tenant design</td>
<td>75</td>
</tr>
<tr>
<td>HPE Ezmeral Container Platform tenants on Kubernetes clusters</td>
<td>75</td>
</tr>
<tr>
<td>Tenant design principles</td>
<td>76</td>
</tr>
<tr>
<td>HPE Ezmeral Container Platform Reference Architectures and Configurations</td>
<td>76</td>
</tr>
<tr>
<td>Physical infrastructure overview</td>
<td>77</td>
</tr>
<tr>
<td>RA for DevOps, CI/CD, app modernization, and hybrid cloud</td>
<td>78</td>
</tr>
<tr>
<td>RC for Big Data Analytics or AI/ML</td>
<td>79</td>
</tr>
<tr>
<td>RC for ML and IoT at Edge</td>
<td>80</td>
</tr>
<tr>
<td>Summary</td>
<td>81</td>
</tr>
<tr>
<td>Learning checks</td>
<td>82</td>
</tr>
<tr>
<td>3 Getting Started with HPE Ezmeral Container Platform</td>
<td>83</td>
</tr>
<tr>
<td>Assumed knowledge</td>
<td>83</td>
</tr>
<tr>
<td>Deployment planning</td>
<td>83</td>
</tr>
<tr>
<td>Network considerations: Two networks</td>
<td>84</td>
</tr>
<tr>
<td>Network considerations: Deploying HPE Ezmeral Container Platform on multiple subnets</td>
<td>85</td>
</tr>
<tr>
<td>Network requirements</td>
<td>86</td>
</tr>
<tr>
<td>Storage requirements</td>
<td>86</td>
</tr>
<tr>
<td>System requirements</td>
<td>87</td>
</tr>
<tr>
<td>High availability planning</td>
<td>87</td>
</tr>
<tr>
<td>Platform HA</td>
<td>88</td>
</tr>
<tr>
<td>Platform HA failover process</td>
<td>88</td>
</tr>
<tr>
<td>Planning for platform HA</td>
<td>89</td>
</tr>
<tr>
<td>Gateway HA</td>
<td>90</td>
</tr>
<tr>
<td>Installation</td>
<td>91</td>
</tr>
<tr>
<td>Installer bundles</td>
<td>92</td>
</tr>
<tr>
<td>Enable HTTPS access</td>
<td>93</td>
</tr>
<tr>
<td>Run the pre-check script</td>
<td>94</td>
</tr>
<tr>
<td>Pre-check config file or standard installation</td>
<td>95</td>
</tr>
<tr>
<td>Data Fabric choices</td>
<td>96</td>
</tr>
<tr>
<td>Complete the installation</td>
<td>97</td>
</tr>
<tr>
<td>Platform administration</td>
<td>99</td>
</tr>
<tr>
<td>Log in to the Web interface</td>
<td>99</td>
</tr>
<tr>
<td>User authentication</td>
<td>100</td>
</tr>
<tr>
<td>User roles</td>
<td>102</td>
</tr>
<tr>
<td>Assigning user roles</td>
<td>103</td>
</tr>
</tbody>
</table>
Enabling platform HA and configuring gateways and gateway HA ... 103
 Enabling platform HA ... 104
 Configuring gateways and gateway HA ... 105
Summary ... 106
Learning checks ... 106

4 HPE Ezmeral Data Fabric ... 107
Assumed knowledge.. 107
Introduction to HPE Ezmeral Data Fabric .. 107
 HPE Ezmeral Data Fabric ... 108
 HPE Ezmeral Data Fabric: XD Cloud-Scale Data Store .. 108
 Ezmeral Data Fabric capabilities .. 110
 HPE Ezmeral Data Fabric deployment options .. 110
 Ezmeral Data Fabric options on Ezmeral Container Platform:
 Ezmeral Data Fabric on Kubernetes (separate storage and compute, recommended) 113
 Ezmeral Data Fabric options on Ezmeral Container Platform:
 Ezmeral Data Fabric on Kubernetes (co-located compute and storage, less recommended) 114
 Ezmeral Data Fabric options on Ezmeral Container Platform:
 Multiple Data Fabric Kubernetes clusters .. 115
 Ezmeral Data Fabric options on Ezmeral Container Platform:
 Embedded Data Fabric (non-production environments) ... 116
HPE Ezmeral Data Fabric concepts ... 117
 Ezmeral Data Fabric namespace .. 117
 Ezmeral Data-Fabric volumes ... 118
 Data Fabric containers ... 119
 Data Fabric storage pools .. 120
 Data Fabric replication ... 120
 Replication settings .. 121
 Data Fabric CLDB .. 122
 Ticket-based authentication to the Data Fabric .. 123
 Key Ezmeral Data Fabric advantages .. 124
Introduction to using Ezmeral Data Fabric within Ezmeral Container Platform ... 126
 Ezmeral Container Platform tenant storage .. 126
 Ways to specify Ezmeral Data Fabric for tenant storage ... 127
 Ezmeral Data Fabric-based tenant storage ... 128
 Access methods to Ezmeral Data Fabric-based tenant storage .. 129
 FS mounts .. 130
Configure cluster settings ...181
Configure cluster authentication ...183
Choose cluster services ..183
Validate and initiate ..184
Troubleshooting ..185
Register a Data Fabric cluster as tenant storage186
Importing an external Kubernetes cluster188
Overview of the cluster import process ...188
Establish the external cluster ...188
Gather necessary information ..190
Import the cluster in Ezmeral Container Platform191
Starting to manage the cluster ..193
Configure Kubernetes tenant general settings193
Configure Kubernetes tenant quotas: Understanding Kubernetes
resources ..195
Configure Kubernetes tenant quotas: Understanding Kubernetes
requests and limits ...196
Configure Kubernetes tenant quotas: Understanding Kubernetes
tenant quotas ...197
Configure Kubernetes tenant quotas: Planning Kubernetes
tenant quotas ..198
Manage Kubernetes users ...200
Adding internal users ..201
Assigning roles to internal users ..202
Using external users ..202
Viewing automatically added external users204
Managing the Cluster as a Site Admin or Kubernetes Cluster Admin204
Edit, shrink, and expand clusters ..204
Access native Kubernetes management tools: Kubernetes
Dashboard ...206
Access native Kubernetes management tools: kubectl207
Quick look at kubectl commands ...209
Understand external cluster management211
Summary ..211
Learning checks ..212
6 Deploying Kubernetes Applications on HPE Ezmeral
Container Platform ...213
Assumed knowledge ..213
Introduction ..214
Introduction to the Kubernetes Tenant User Interface (UI)214
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options for running applications in the Tenant UI</td>
<td>215</td>
</tr>
<tr>
<td>Enabling the Web Terminal</td>
<td>216</td>
</tr>
<tr>
<td>Load YAML and other files in FS mount</td>
<td>217</td>
</tr>
<tr>
<td>Running applications with deployment objects</td>
<td>218</td>
</tr>
<tr>
<td>Example YAML file for a deployment object</td>
<td>218</td>
</tr>
<tr>
<td>Example file that selects node based on tag</td>
<td>221</td>
</tr>
<tr>
<td>Applying the file using the Kubectl tab</td>
<td>222</td>
</tr>
<tr>
<td>Applying the file in the Web Terminal and viewing the result</td>
<td>224</td>
</tr>
<tr>
<td>Adding services</td>
<td>224</td>
</tr>
<tr>
<td>Adding a service with a YAML file</td>
<td>225</td>
</tr>
<tr>
<td>Defining a ClusterIP service</td>
<td>226</td>
</tr>
<tr>
<td>Defining a NodePort service</td>
<td>226</td>
</tr>
<tr>
<td>Viewing and accessing a NodePort service (no gateway)</td>
<td>227</td>
</tr>
<tr>
<td>Providing gateway access for a service</td>
<td>229</td>
</tr>
<tr>
<td>Load balancing with the HPE Ezmeral Container Platform gateway</td>
<td>230</td>
</tr>
<tr>
<td>Viewing and accessing service endpoints (gateway)</td>
<td>232</td>
</tr>
<tr>
<td>Deploying applications with Helm</td>
<td>232</td>
</tr>
<tr>
<td>Using Helm</td>
<td>232</td>
</tr>
<tr>
<td>Helm components</td>
<td>233</td>
</tr>
<tr>
<td>Using Helm in Ezmeral Container Platform Web Terminal</td>
<td>235</td>
</tr>
<tr>
<td>Deploying applications with KubeDirector</td>
<td>238</td>
</tr>
<tr>
<td>Why KubeDirector</td>
<td>238</td>
</tr>
<tr>
<td>KubeDirector apps and clusters</td>
<td>239</td>
</tr>
<tr>
<td>Key components of a KubeDirector application: Roles</td>
<td>240</td>
</tr>
<tr>
<td>Key components of a KubeDirector application: Persistent directories</td>
<td>241</td>
</tr>
<tr>
<td>Key components of a KubeDirector application: Events</td>
<td>242</td>
</tr>
<tr>
<td>Key components of a KubeDirector application:</td>
<td>243</td>
</tr>
<tr>
<td>Config package</td>
<td>243</td>
</tr>
<tr>
<td>Adding KubeDirector applications to Ezmeral Container Platform</td>
<td>244</td>
</tr>
<tr>
<td>Deploying KubeDirector applications in Ezmeral Container Platform</td>
<td>245</td>
</tr>
<tr>
<td>Viewing KubeDirector applications in Ezmeral Container Platform</td>
<td>246</td>
</tr>
<tr>
<td>Updating a KubeDirector cluster in HPE Ezmeral Container Platform</td>
<td>247</td>
</tr>
<tr>
<td>Using KubeDirector on an air-gapped cluster</td>
<td>248</td>
</tr>
<tr>
<td>Using DataTaps with big data applications</td>
<td>249</td>
</tr>
<tr>
<td>Review DataTaps</td>
<td>249</td>
</tr>
</tbody>
</table>
Hadoop and HDFS..249
Hadoop architecture on HPE Ezmeral Container Platform............250
Creating and referencing DataTaps ..251
Using DataTaps in apps on Ezmeral Container Platform:
Specify the DataTap within the Kubernetes object252
Using DataTaps in apps on Ezmeral Container Platform:
Configure the application to use the DataTap256
Using FS Mounts and PVs ..257
Using FS Mounts in pods ...257
Provisioning dynamic PVs on Ezmeral Data Fabric258
Using Apache Spark on HPE Ezmeral Container Platform..........261
Apache Spark ...261
Spark-submit ..262
Apache Spark Cluster Manager options263
Enabling Spark Operator on an Ezmeral Container
Platform Kubernetes cluster ...264
Changes implemented by Spark Operator265
Running a Spark application with the Spark Operator:
Spark application object ..266
Running a Spark application with the Spark Operator:
Location options ...267
Running a Spark application with the Spark Operator:
DataTap option ...269
Running a Spark application with the Spark Operator:
Process ...269
Deploying a standalone Spark cluster on HPE Ezmeral
Container Platform ..270
Running a job on a standalone Spark cluster on
HPE Ezmeral Container Platform ..271
Using Istio with HPE Ezmeral Container Platform.....................273
Why Istio and why Istio on HPE Ezmeral Container Platform273
Istio architecture ..274
Enabling Istio on HPE Ezmeral Container Platform275
Add an Istio Gateway host to the cluster276
Enabling Istio on the Kubernetes cluster277
Enabling Istio service mesh on the Kubernetes tenant278
Istio service registry ...279
Istio virtual services and destination rules279
Istio virtual services with ingress gateway285
Viewing Virtual Endpoints ...288
Accessing the Kiali Dashboard ..288
xiii

Some tasks available in the Kiali Dashboard ..288
Summary ..289
Learning checks ..290

7 Implementing ML Ops on an HPE Ezmeral Container Platform Kubernetes Cluster ...291

Assumed knowledge ...291
Introduction to ML Ops ..292
 What are Machine Learning (ML) and Deep Learning (DL)292
 ML lifecycle ..293
Simplified example of the ML lifecycle: Data prep294
Simplified example of the ML lifecycle: Build ..295
Simplified example of the ML lifecycle: Supervised training296
Simplified example of the ML lifecycle: Unsupervised training297
Simplified example of the ML lifecycle: Models and scoring298
Simplified example of the ML lifecycle: Deployment299
Simplified example of the ML lifecycle: Monitoring299
Some common applications in the ML lifecycle300
Challenges in navigating the ML application lifecycle303
How HPE Ezmeral ML Ops addresses these challenges304
Why HPE Ezmeral ML Ops: Shared platform services305
Why HPE Ezmeral ML Ops: Shared cluster services305
Why HPE Ezmeral ML Ops: Shared tenant services306
Why HPE Ezmeral ML Ops: ISV integration ..307

Implementing ML projects on HPE Ezmeral Container Platform307

High-level process for running ML projects in HPE Ezmeral Container Platform ..308
Site Admin: Check licensing ..308
Site Admin: Prepare the cluster and tenant storage309
Site Admin: Create the AI/ML project (tenant)311
Introduction to the AI/ML Project UI ...312
Project Admin: Manage the project repository313
Project Admin: Set up the Global Source Control315
Project Member: Pieces of a project ..316
Project Member: Configure individual source control317
Understanding the training application ...318
Project Member: Launching a Training Cluster319
Project Member: View Training Cluster Endpoints320
Understanding the Notebook application ...320
Project Member: Understanding Notebook cluster connections321
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Member: Collect secrets</td>
<td>322</td>
</tr>
<tr>
<td>Project Member: Launching Jupyter Notebook</td>
<td>323</td>
</tr>
<tr>
<td>Project Member: Access the Notebook server</td>
<td>324</td>
</tr>
<tr>
<td>Project Member: Use Ezmeral ML Ops magic commands in a Notebook</td>
<td>325</td>
</tr>
<tr>
<td>Project Member: Register the model</td>
<td>327</td>
</tr>
<tr>
<td>Project Member: Use Ezmeral ML Ops magic commands in a Notebook to update model registration</td>
<td>328</td>
</tr>
<tr>
<td>Understanding the deployment application</td>
<td>329</td>
</tr>
<tr>
<td>Project Member: Deploy a Deployment Cluster</td>
<td>330</td>
</tr>
<tr>
<td>Sending calls to the model</td>
<td>331</td>
</tr>
<tr>
<td>Setting Up Kubeflow on HPE Ezmeral Container Platform</td>
<td>332</td>
</tr>
<tr>
<td>Kubeflow overview</td>
<td>332</td>
</tr>
<tr>
<td>Kubeflow pipelines</td>
<td>333</td>
</tr>
<tr>
<td>Kubeflow authentication architecture</td>
<td>335</td>
</tr>
<tr>
<td>Preparing to install Kubeflow on Ezmeral Container Platform: Cluster requirements</td>
<td>336</td>
</tr>
<tr>
<td>Preparing to install Kubeflow on Ezmeral Container Platform: Storage requirements</td>
<td>337</td>
</tr>
<tr>
<td>Air-gap environments only: Add Kubeflow images to the private registry</td>
<td>338</td>
</tr>
<tr>
<td>Install Kubeflow</td>
<td>339</td>
</tr>
<tr>
<td>Result of Kubeflow installation</td>
<td>343</td>
</tr>
<tr>
<td>Final checks and patches</td>
<td>346</td>
</tr>
<tr>
<td>Kubeflow user profiles (namespaces)</td>
<td>349</td>
</tr>
<tr>
<td>Project member: Accessing the Kubeflow Dashboard</td>
<td>350</td>
</tr>
<tr>
<td>Summary</td>
<td>351</td>
</tr>
<tr>
<td>Learning checks</td>
<td>352</td>
</tr>
</tbody>
</table>

8 Deploying Big Data or AI/ML Workloads on HPE EPIC Hosts353
Assumed knowledge | 353 |
Using EPIC hosts | 354 |
Workloads and tenants | 354 |
Key EPIC concepts | 354 |
Overview of using EPIC | 355 |
Site Admin: Add hosts | 356 |
Site Admin: Install apps from App Store | 358 |
Site Admin: Set up the tenants | 359 |
Site Admin: Specify additional tenant options | 360 |
Site Admin: Managing EPIC tenant users | 361 |
9 Day 2 Operations on HPE Ezmeral Container Platform

Assumed knowledge

Monitoring with Ezmeral Container Platform

Using Kibana

Using Nagios alerts

Maintaining the Ezmeral Container Platform
Upgrade Kubernetes software on Kubernetes clusters ..405
Summary ...407
Learning checks ..407

10 Practice Exam ...409
Introduction ...409
Minimum qualifications ...409
Exam details ..409
Testing objectives ...410
Advice to help you take the HPE2-N68 exam ..411
Practice Test ...411

Appendix: Answers to Learning Checks ..433
Chapter 1 ...433
Chapter 2 ...433
Chapter 3 ...434
Chapter 4 ...435
Chapter 5 ...435
Chapter 6 ...437
Chapter 7 ...437
Chapter 8 ...438
Chapter 9 ...439

Index ...441
1 Container Foundations

EXAM OBJECTIVES

- Define containers and explain how they work.
- Describe container use cases.
- Explain the need for container orchestration.

Assumed knowledge

- Basic understanding of virtual machines (VMs)
- Basic understanding of data center servers and storage

Container overview

The chapter provides a brief overview of container technologies with an emphasis on Docker containers. It then explains why companies need container orchestration solutions to run containerized applications at scale and introduces a de-facto standard open-source solution, Kubernetes.

You will begin by learning about containers and why companies are embracing this technology.

What is a container?

Containers are designed to make it easier to move applications from one server to another without the risk of missing dependencies causing issues.

Traditionally, moving an application from one system to another could lead to major problems. To understand why, you need to understand a little bit about an application’s “runtime system” and why any changes to that system can cause problems. The runtime system is the environment in which an application runs. It includes the binaries that translate human readable code to machine code for execution. The runtime system also includes libraries, which are common pieces of code that multiple applications can call on and run. For example, python has a math library with many mathematical functions already defined within it so that every developer does not have to recreate these functions. Most modern applications use dynamic libraries, which are linked to the code when it is compiled (if the application uses a compiled language), but only have their code loaded into the application when the application starts to run.
As developers create an application, they set up the runtime system with all the binaries and libraries that the application needs. Now imagine that the code moves from one server to another—for example, from a server in the development environment to a server in the production environment. If the new server’s runtime system does not exactly mirror the development one, the application might link to a dynamic library that does not exist—causing it to fail to compile or run.

As shown in Figure 1-1, a container combines an application with its runtime system so that the application always has the correct binaries and libraries to run successfully.

Containers versus VMs

Another key characteristic of containers is that they isolate the application processes. Multiple containers can run on the same host in isolation. You are probably familiar with virtual machines (VMs), another technology that enables a logical division of resources on a host. It can be useful to look at how a container compares with a VM.

As shown in Figure 1-2, both VMs and containers allow a single physical server to support multiple isolated applications, each with its own runtime systems. However, each VM has its own full OS while all containers on a host share an OS. VMs are deployed over a hypervisor while containers are deployed over an OS and a container runtime platform. The most common container runtime is Docker, which will be the focus of this study guide. (Other container platforms exist, including containerd, runc, and cri-o.)

Neither the VM nor the container architecture is better per se, but each is optimized for particular use cases.
Container benefits

As shown in Figure 1-3, containers provide a number of benefits. For example, containers can offer greater portability for applications from one environment to another. Although you can move a live virtual machine (VM), state and all, from one host to another using technologies such as VMware vMotion, these technologies can be complex and limited in scope. (For example, the VM might only be able to move to another host in the same segment of the data center.) Containers, on the other hand, do not truly move. You simply stop a container on one host and start it on any other host running the same container platform. Because the application carries its runtime system with it, it runs on the new host exactly as it did on the previous host without the risk of missing dependencies causing issues. (Note, though, the restarting container does not take its state with it; later in this study guide, you will learn how HPE Ezmeral Container Platform helps to fill in such gaps and enable support for stateful apps.)